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1. Explanatory introduction (may be bypassed) 
Since 2005, the students in the Danish 9-12 grade high school (gymnasium), must deliver a project 
in the middle of the third year. And for ideological reasons the project must comply two subjects 
one from science and one from humanities (e.g. chemistry and English). And yes , it is absurd. 
At the same time the academic (theoretical) level has vastly deteriorated in the Danish high school 
from acquiring objective knowledge and skills from text books and learning scientific thinking, it 
has turned into humanistic critical analysis of material found on the Internet done in an almost 
scholastic framework.  
The knowledge that the students acquire in mathematics and physics are no longer theoretical but 
lexical. Proofs in mathematics and derivation in physics are no longer a part of their curriculum. 
Even in the third year most student are unable to solve a linear equation with one unknown without 
resorting to a computer, and they are not even near to be able to differentiate or integrate by hand.  
However, when they get their project, it is mandatory that it should be formally a typographically 
formed as a scientific article or rather an essay, (with an abstract in English). Of course this is 
utterly crazy, but this is how it is. 
Often the formulations of the projects imply theoretical considerations, and the students are lost of 
course, because theoretical explanations are seldom found on the Internet. 
I stopped teaching in 2013, but until then, I had to write some notes to the students to whom I 
formulated their 3 year projects, to insure, that the project the student delivered should not be 
entirely superficially lexical transcript from Wikipedia and others. 
In 2010 I had a student, who had chosen rockets as the subject for his project. About the same time 
the school had acquired a water rocket. 
Being a physicist, I am not entirely satisfied by a lexical essay. I want real numbers based on 
theory from first principles. This article is the result of my endeavour.  
 

2. The rocket equation  
The water rocket is a relatively new invention in the teaching of physics in the Danish high school. 
Basically it is a (rocket shaped) container with a hole at the bottom. In the hole is placed a tight 
cork with a tube connected to an air pump to raise the pressure in the container. At a certain 
pressure the cork in the bottom is released, because of the pressure in the container, and if the 
rocket is half filled with water, the water is pressed out through the hole at a considerable speed 
delivering a force to lift the rocket. 
   
The rocket equation is well established, and it can be derived from the conservation of momentum  
We shall assume that we have a rocket (of any dimension) with mass m = m(t). 
The rocket is driven forward by spouting a constant mass μ per unit of time, with a velocity u 
relative to the rocket, such that μ = -dm/dt. The minus sign because m(t) is decreasing.  
Hereby the velocity of the rocket is increased from v to v+dv.  
From an observer at rest compared to the rocket, that is, where the rocket has velocity v, the mass 
dm has the velocity v – u. 
Applying the conservation of momentum p(t) = p(t+dt) on the system consisting of the rocket and 
the spouted mass, we have: 
 

(2.1) 
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We discard the term dmdv, since it is of second order in the differential quantities, and it will go to 
zero, when dividing with dt, and letting dt go to zero. 
After reduction, we are left with the equation: 
 

 (2.2)  
m

dm
udvudmmdv  0   

And this can be integrated to the rocket equation. 
 

(2.3)  
m

m
uvv 0

0 ln       , where  m = mv = m0 - μt 

 

2.1 Kinematics considerations, when launching a rocket from the earth 
If we perceive m and v, as functions of time the equation (2.2) after division by dt becomes: 
 

(2.4)  
dt

dm

m
u

dt

dv 1
      

 
If the rocket is launched vertically, we must include the influence of gravity g in the calculation of 
the speed v. 
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Which is integrated to: 
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If we want to determine the height the rocket reaches (the distance passed), we must evaluate: 
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In the evaluation of 
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After some reduction an expression for the height is found:  
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3. The air pressure rocket. The water rocket. 
We assume that we are dealing with a rocket, where the “engine” consists of water that is pressed 
backwards out of the rocket with velocity u through a small opening with cross section A  
 
We shall assume that the pressure under which the water (or gas) is exhausted is the same during 
the launch. This is not realistic of course, but without this assertion things simply get to 
complicated.  
 
The atmospheric pressure is p0 , while the pressure inside the rocket is  p. To determine the 
velocity with which the water or gas is exhausted, we may apply Bernoulli’s law, which apply 
along a streamline running from (1) to (2). Using the notations: p = pressure,  ρ = density and        
v = velocity, we can write Bernuilli’s law. 
 

(3.1)  2
22

2
11 ½½ vpvp     

 
The position (1) = ”is inside the rocket” og (2) = ”outside the rocket”, and therefore: 
v1 = 0, p2 = p0 and v2 = u, which gives the equation: 2

01 ½ uppp  . 

The equation may be solved with respect to u:  
 

(3.2)  


p
u




2
 

 
The mass dm that is exhausted through the opening A in the time dt , is the mass in a mathematical 
“tube” having the length udt and cross section A, and therefore the volume: dV = uAdt, so that   
dm = ρdV = ρuAdt. Thus dm/dt is determined by the formula:  
 

(3.3)  uA
dt

dm     

3. 1 Numerical example with the water rocket 
We put: Δp = 1.0 atm = 1.0 105  Pa.   ρ = 1.0 103 kg/m3. A = π (1.0·10-2)2 m2 = 3.14·10-4 m2, then 
we have, according to (3.2) and (3.3). 
 

 (3.4) smsmu /1.14/
10
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3

5




      and      skgskg
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If the mass of the rocket without water is  50.0 g, and it is filled with 0.5 l water, the rocket will 
obtain a vertical velocity v, and with: 
 

 skg
dt

dm
/4.4 , it will take s

sl

l
11.0

/4.4

50.0
  to empty the container.  

 
For the velocity we have according to (2.6): 
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(2.3.2)  
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The height that the rocket reaches can be determined from one of the equations regarding motion 
with constant acceleration:  

)(2 0
2

0
2 ssavv  ,  

which in this case becomes: 

 mhghv 5520 2
0   

 
This should of course be compared with experiments with the water rocket, which gave: 14 m. 
 
There is really noting allarming in the large discrepancy between theory and experiment. Firstly 
we have assumed a constant pressure in the rocket container, but more severely, we have ignored 
any loss of energy from dissipative forces, which we cannot ignore, but neither we can take them 
into account. Finally we se that the height is proportional to the square of the velocity, with which 
the rocket is launched, and if we cut this into one half, we almost arrive at a height of 14 m. 
Nevertheless we have made a quantitative prediction of the behaviour of a rocket from first 
principles. 

4. The Lighter gas rocket 
The lighter gas rocket is just an empty plastic soda pop bottle, where a small hole has been drilled 
in the capsule. With the correct mixture of Butane and oxygen in the bottle, one may ignite the 
mixture in the bottle, causing the mixture to explode.  
 
The fuel to the lighter gas rocket is butane: C4H10  (Mbutane = 58 g/mole), which reacts with oxygen 
O2 (Moxygen  = 32 g/mol)  after the reaction equation. 
 
(3.1)  1 C4H10 + 6.5 O2   ->  4 CO2 + 5 H2O 
 
If the reaction shall develop explosively it is necessary that the amounts of butane and oxygen are 
carefully tuned, so for each mole of butane, there should be 6.5 mole of oxygen. 
According to Avogrado’s law (or the equation of state of ideal gasses) then: Equal numbers of 
moles of different gasses occupy at the same pressure and temperature, the same volume. 
 
The volume of butane should there for be 1:6.5 = 2:13  of the volume of oxygen. 
If the volume of the container is V , then the volume of oxygen is 0.20V, since the atmosphere 
consists of roughly 20% oxygen), the volume of butane should be: 0.20:6.5 V = 3.08 10-2 V. 
So if the volume of the container is V = 0.5 l = 500 ml it gives 15.4 ml butane. 
The calorific value for butane is 45.8 MJ/kg. 
15.4 ml of butane corresponds to = 15.4 ml/24 l /mol = 6.42 10-4 mol.   
And the mass is therefore: m = nMM =   6.42 10-4 mol 58 g/mol = 3.72 10-2 g = 3.72 10-5 kg. 
 
The calorific value of the amount of butane is: Q =  3.72 10-5 kg· 45.8 MJ/kg = 1.70 kJ. 
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4.1 Pressure conditions for the lighter gas rocket  
For gasses the density depends on the pressure of the gas, and this may complicate the calculations 
severely. But in the same manner as we assumed that the pressure was constant during the 
exhaustion, we shall assume that the density of the gasses is constant during the exhaustion. 
As it is often the case in physics one must compromise to obtain a theoretical result. 
The derivation requires four theorems: 
 

1. The law of Bernoulli for the flow of liquid:    2
01 ½ uppp      


p

u



2

 

 
2. m = n·M  (The mass of a gas equals the number of moles times the mass of one mole) 
 

3. The equation of state for ideal gasses:  dn
V

RT
dP

V

RT
nP   

4. The continuity equation:  uAdtdmuA
dt

dm   . 

As it was the case for the water rocket, dn moles are ejected from a hole with cross section A. 
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    gives: 
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(3.3) dtk
pp
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
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The atmospheric pressure is p0.  Inserting some suitable values: 
 A = 1.26 10-5 m2 , T =500 K,  p0 = 1.0 atm,  V = 0.50 l,  M =29 g/mol and ρ = 1.29 kg/m3, we 
obtain a value for k1 = 5.80 103.  
 
We have separated the differential equation, so it is quite easy to integrate. We stipulate no value 
(for the present unknown) initial pressure p1. 
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The equation above, however, is of little use, since we still do not know the initial pressure p1. 
In the next calculation, we shall try to calculate p1 finding the temperature from the heat generated 
from the chemical reaction. 
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This implies, however, that we must also stipulate a reaction time for the chemical reaction that 
generates the heat. We shall assume that the reaction time is from 0.50 to 1.0 seconds, and let the 
outcome of the calculation decide which is most likely.  
We have earlier found that the heat generated for the rocket in question is: Q = 1.70 kJ.  Also we 
put A =1.26 10-5 m2. cgas is the heat capacity of the gas. It then follows: 
 
 

(3.4) dtkdt
cmt

Q
dTdTcmdt

t

Q
dQ

gasgasr
gasgas

r
2  

 
From the equation of state for ideal gasses: nRTPV  , we find: 
 

(3.5)    dT
V

nR
dP      

 
(Valid, when n and V are held constant). Actually the number of moles n is not constant, since gas 
is streaming out of the rocket, but we have to compromise if we want to obtain theoretical result, 
that can be interpreted. We therefore insert (3.4) into (3.5) to obtain. 
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The differential equation is hereafter: 
 

(3.8) 201 kppk
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The differential equation can be separated, and (with only a little effort) be integrated. 
 

(3.9)   

p
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t

dt
ppkk
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0 0012

 

The integral has the form:    xa

dx
.  

It is solved by the substitution: tdtdxtxtx 22    
 

Resulting in:   


 ta

tdt

xa

dx 2
 , and followed by the substitution  a + t = z. 
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If we insert: x = p - p0, but keeping a = k2/ k1 , we get the solution to the original integral (3.9).  
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The solution is, however, not immediately applicable, since we have no way of solving for p 
 
To investigate how the pressure grows with time, we have to resort to numerical methods, but the 
result depends heavily on the duration of the chemical reaction. 
 
What we are interested in is actually the momentum transferred to the rocket. 
 

 dtAuuAdtuudmmvd 2)(      and   


)(2 0pp
u


   it  gives: 

 
 dtppAmvddpmomemtum )(2)( 0  

 
The last equation can be solved numerically at the same time as we do the pressure equation 
numerically. 
 
Assuming that the reaction time tr = 0.5 s , then the numerical calculation gives a pressure of       
2.1 atm, and the momentum transferred to the rocket is 1.15 kg m/s. 
 

Assuming that the reaction time tr = 1.0 s , then the numerical calculation gives a pressure of       
1.3 atm, and the momentum transferred to the rocket is 0.65 kg m/s. 
 

A pressure of 2.1 atm is hardly realistic, so we carry on with the latter value. 
 
Pgenerated = 0.65 kgm/s. Putting it equal to the momentum transferred to the rocket.  
Pgenerated  =mrocketv = 0.65 kgm/s  and  mrocket = 22.3 g , we get:  
 

 smv /29
1023,2

65,0
2



  . 

 
Experimenting with the lighter gas rocket, where it was launched on a ramp with an elevation of 
150, it was found from measuring the range, that it had an initial velocity of about 12 m/s. 
Again this is not entirely discouraging, since we, (as it was the case with the water rocket), have 
made several simplifying assumptions, and more important have ignored any dissipative forces. 
 
Still it is to be considered as an theoretical explanation of the performance of a (lighter gas) rocket 
based in first principle of physics. 
   


